Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling

نویسندگان

  • Rebeca Romo-Vázquez
  • Hugo Vélez-Pérez
  • Radu Ranta
  • Valérie Louis-Dorr
  • Didier Maquin
  • Louis Maillard
چکیده

This paper proposes an automatic method for artefact removal and noise elimination from scalp electroencephalogram recordings (EEG). The method is based on blind source separation (BSS) and supervised classification and proposes a combination of classical and news features and classes to improve artefact elimination (ocular, high frequency muscle and ECG artefacts). The role of a supplementary step of wavelet denoising (WD) is explored and the interactions between BSS, denoising and classification are analyzed. The results are validated on simulated signals by quantitative evaluation criteria and on real EEG by medical expertise. The proposed methodology successfully rejected a good percentage of artefacts and noise, while preserving almost all the cerebral activity. The “denoised artefact-free” EEG presents a very good improvement compared with recorded raw EEG: 96% of the EEGs are easier to interpret.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches

Electroencephalographic (EEG) recordings are often contaminated with muscle artifacts. This disturbing myogenic activity not only strongly affects the visual analysis of EEG, but also most surely impairs the results of EEG signal processing tools such as source localization. This article focuses on the particular context of the contamination epileptic signals (interictal spikes) by muscle artif...

متن کامل

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

Functional source separation improves the quality of single trial visual evoked potentials recorded during concurrent EEG-fMRI

EEG quality is a crucial issue when acquiring combined EEG-fMRI data, particularly when the focus is on using single trial (ST) variability to integrate the data sets. The most common method for improving EEG data quality following removal of gross MRI artefacts is independent component analysis (ICA), a completely blind source separation technique. In the current study, a different approach is...

متن کامل

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

Blind Source Separation Methods Applied to Muscle Artefacts Removing from Epileptic Eeg Recording: A Comparative Study

Electroencephalogram (EEG) recordings are often contaminated with muscle artifacts. These artifacts obscure the EEG and complicate its interpretation or even make the interpretation unfeasible. In this paper, realistic spike EEG signals are simulated from the activation of a 5 cm2 epileptic patch in the left superior temporal gyrus. Background activities and real muscle artifacts are then added...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012